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Analysing data from pooled genetic sequencing screens using edgeR

1 Introduction

This document is intended to provide a how to guide for the analysis of pooled genetic
sequencing screen data using the edgeR package. Refer to the main article (Dai et al. 2014)
for a summary of this analysis pipeline, and be sure to cite this article if you make use of the
workflow we describe in your own research.

Pooled genetic sequencing screens employ either RNA interference using short hairpin RNAs
(shRNAs) or genetic mutation using single guide RNAs (sgRNAs) with the CRISPR-Cas9
system to perturn gene function. This approach has been successfully employed by a number
of groups (Zuber et al. 2011, Sullivan et al. 2012, Bassik et al. 2013, Shalem et al. 2014 and
Wang et al. 2014). Depending on the biological question of interest, typically two or more cell
populations are compared either in the presence or absence of a selective pressure, or as a time
course before and after a selective pressure is applied. Gain of shRNA /sgRNA representation
within a pool suggests that perturbing gene function confers some sort of advantage to a cell.
Similarly, genes whose loss of function is disadvantageous may be identified through loss of
shRNA/sgRNA representation. Screening requires a library of sShRNA/sgRNA constructs in a
lentiviral or retroviral vector backbone that is used to generate a pool of virus for transducing
cells of interest. The relative abundance of these shRNAs/sgRNAs in transduced cells is
then quantified by PCR amplification of proviral integrants from genomic DNA using primers
designed to amplify all sShRNA/sgRNA cassettes equally, followed by second-generation am-
plicon sequencing. Sample-specific primer indexing allows many different conditions to be
analysed in parallel.

In this vignette, a variety of different screens are analysed, ranging in both size (from tens to
more than a thousand shRNAs/sgRNAs) and complexity (from the simplest two group com-
parison through to a time-course design). In every case, loss and/or gain of shRNA/sgRNA
representation between different experimental groups is of interest.

The data sets used in this vignette can be downloaded from http://bioinf.wehi.edu.au/
shRNAseq/. Users must have the latest version of R and edgeR (> 3.5.23) installed in
order to run the code that follows. The following commands can be run at the R prompt to

install edgeR:
if (lrequireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
BiocManager::install("edgeR")

2 Analysis of a small shRNA-seq screen

In our first case study, we begin with raw sequence data available from the fastq file
screenl.fastq. The structure of each sequence in this fastq file is known in advance, and
depends upon the PCR primers used (Figure 1).

In this sequencing run, 4 independent experiments, each with biological replicate samples at
Day 2 and Day 14 were available. The hairpins used in each experiment came from 4 dif-
ferent plates (plates 247-0001, 247-0003, 247-0005 and 247-0006 were included in this run).
Sequencing was carried out on an Illumina HiSeq 2000 machine. Information about samples
and hairpins are available in tab delimited text files named Samplesl.txt and Hairpinsl.txt
respectively. Note that the sample and hairpin specific files must have a particular format
with at least two columns (named /D’ and ‘Sequences’) containing the sample or hairpin ids
(which must be unique) and the sample index or hairpin DNA sequences (these must be of
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uniform length and also be unique) to be matched. The sample index file may also contain
a ‘group’ column that indicates which experimental group a sample belongs to. Additional
columns in each file will also be retained in the final R object that summarises the data from
these files. In this example, the annotation information has been anonymised as this screen
is unpublished. These files, along with the fastq file are assumed to be in the current working
directory.

Structure of shRNA-seq amplicons
Base position in

sequence read 1.5 38 56
Millions of short - — N —
sequences with
known format
available in ol
fastq fil
astq file o
sample index hairpin sequence

Figure 1: Typical sequence format in a sShRNA-seq screen
The base positions of the sample index and hairpin sequence may vary slightly between screens depending
upon the PCR strategy. These parameters can be adjusted in the processAmplicons function.

The function processAmplicons can be used to deconvolve the sequences in the fastq file
into a matrix of counts summarising the number of times each hairpin was observed in
each sample. To obtain more information about this sequence processing function, type the
following:

?processAmplicons

We use this function to process the raw sequence data from this screen in the following
commands.

library(edgeR)

# Read in sample & hairpin information

sampleanno = read.table("Samplesl.txt", sep = "\t", header = TRUE)
sampleanno[1:5, |

#4 1D Sequences  group Experiment Replicate

##1 1 AAAAA TF1 Day2 TF1 1
#4# 2 8 AAACT TF1 Dayld TF1 1
#4311 AAAGG TF1 Day2 TF1 2
#4420 AACAT TF1 Dayl4 TF1 2
#4523 AACCG TF1_Day2 TF1 3

hairpinseqs = read.table("Hairpinsl.txt", sep = "\t", header = TRUE)
hairpinseqs[1:5, |

H#HH# ID Sequences  Plate

#4+ 1 Hairpinl CTCAGGACTTTGCAGCCAT 247-0001
## 2 Hairpin2 CAGTGATGCTCAAACAGAA 247-0001
## 3 Hairpin3 GCCTTGAGATACATGCCAA 247-0001
## 4 Hairpind CAATTCTCTGCTTAATCAT 247-0001

## 5 Hairpind CATGGCTACAGCTATAGGA 247-0001

# Process raw sequences from fastq file
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x = processAmplicons("screenl.fastq", barcodefile = "Samples1.txt", hairpinfile = "Hair-
pinsl.txt",
verbose = TRUE, plotPositions = TRUE)

#+4 -- Number of Barcodes : 25

#+4 -- Number of Hairpins : 1269

#+# Processing reads in screenl.fastq.

#+4 -- Processing 10 million reads

#+4 -- Processing 20 million reads

#+# -- Processing 30 million reads

#+# -- Processing 40 million reads

#+4 -- Processing 50 million reads

#+4 -- Processing 60 million reads

#4 -- Processing 70 million reads

#+# -- Processing 80 million reads

#+# Number of reads in file screenl.fastq : 76967231

##

#+# The input run parameters are:

#4# -- Barcode in forward read: length 5

## -- Hairpin in forward read: length 19

#4 -- Mismatch in barcode/hairpin sequences not allowed.

##

#+# Total number of read is 76967231

#+# There are 76898853 reads (99.9112 percent) with barcode matches
## There are 65271202 reads (84.8039 percent) with hairpin matches
#+# There are 65243799 reads (84.7683 percent) with both barcode and hairpin matches
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Running the above code takes around 6 minutes and uses 800Mb of RAM. Note that a very
high proportion (> 80%) of the reads match to expected combinations from our screen,
which is an indication that the sequencing for this screen has gone well. Percentages that
are very low, or quite different between the barcode and hairpin values (the hairpin % would
generally be lower than the barcode % due to sequencing errors) may indicate problems with
the experiment.
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The optional plotPositions argument creates a density plot of the read indexes each barcode
and hairpin sequence are found in. This plot is useful as a sanity check in order to determine
if processAmplicons is finding the expected sequences.

The counts are stored in a DGEList object. We next filter out hairpins with low counts
(hairpins with at least 0.5 counts per million in at least 3 samples were retained) and plot the
overall number of reads per sample and hairpin in a barplot. Counts per million are used as
these values are standardised for systematic differences in the amount of sequencing between
different samples, which can be subtantial (see first barplot below).

X

## An object of class "DGEList"

## $counts

HH 1 8 11 20 23 2629 35384148 50 53 60 63 68 71 74 77 83 86

## Hairpinl 25452 5432 9783 12071 174256333 1 6 3 0 0 09702110 417 0 023 4
## Hairpin2 36705 8329 11954 14240 190478269 017 3 1 1 0 02010 521 0 024 2
## Hairpin3 35364 10003 11894 18645 200478419 112 6 1 0 01103420 326 2 121 0
## Hairpin4 29074 9311 12246 20544 168539570 112 6 1 0 0 02317 226 0 022 1
## Hairpind 34998 10562 12071 22317 204479099 017 4 0 1 1 03421 523 1 031 2
HH 89 96 98 101

## Hairpinl 0 0 0
#4 Hairpin2 0 0
#4 Hairpin3 0 1
#+ Hairpind 0 0
#+# Hairpin5 0 0
#+4 1264 more rows ...
£

#4 $samples
#4# ID lib.size norm.factors  group Experiment Replicate

o O OO
OO O OO

#4 1 1 2987408 1 TF1_ Day? TF1 1
## 2 8 989929 1 TF1_ Dayl4 TF1 1
## 311 1085070 1 TF1 Day?2 TF1 2
## 420 2136955 1 TF1_Dayl4 TF1 2
## 523 1582454 1 TF1_ Day2 TF1 )
#4 20 more rows ...

##t

## $genes

HH 1D Sequences  Plate

## Hairpinl Hairpinl CTCAGGACTTTGCAGCCAT 247-0001
## Hairpin2 Hairpin2 CAGTGATGCTCAAACAGAA 247-0001
## Hairpin3 Hairpin3 GCCTTGAGATACATGCCAA 247-0001
44 Hairpind Hairpind CAATTCTCTGCTTAATCAT 247-0001
## Hairpin5 Hairpin5 CATGGCTACAGCTATAGGA 247-0001
#+4 1264 more rows ...

# Filter hairpins with low counts
sel = rowSums(cpm(x$counts) > 0.5) >= 3
x = x[sel, |

# Plot number of hairpins that could be matched per sample
par(mfrow = ¢(2, 1))
barplot(colSums(x$counts), las = 2, main = "Counts per index", cex.names = 0.5, cex.axis = 0.8,
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ylim = ¢(0, 2e+07))

% Select hairpins from plates run in this screen
plateinfo = x$genes$Plate

selhp = plateinfo == "247-0001" | plateinfo == "247-0003" | plateinfo == "247-
0005" | plateinfo ==
"247-0006" | plateinfo == "Control"

# Plot per hairpin totals across all samples
barplot(rowSums(x$counts[selhp, |), las = 2, main = "Counts per hairpin", cex.names = 0.5,
cex.axis = 0.8, ylim = ¢(0, 1500000))
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The number of sequences that could be assigned to the different samples and hairpins repre-
sented in this set of experiments can be seen to vary substantially. For example, two samples
receive many more matches than the others (top barplot). Implicit in any downstream anal-
ysis carried out in edgeR is an adjustment to account for differences in library size, which
is quite important when the overall amount of sequencing can vary considerably between
samples. The botttom barplot shows that one particular hairpin appears to be much more
abundant than the others. This happens to be a control, which is included in every plate, so
is expected to be around 4 times higher than the others.
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We next subset the DGEList object to hairpins and samples from the first experiment in-
volving plate 1 (247-0001)/experiment TF1. A multidimensional scaling plot is generated
to assess the consistency between replicate samples. The hairpin-specific variation is then
estimated using the replicate samples from each group (Day 2 and Day 14). This simple ex-
perimental set-up leads us to use edgeR's classic extact testing methodology (Robinson and
Smyth, 2008) via the exactTest function to assess differences between the Day 14 and Day 2
replicate samples. The top ranked hairpins are listed using the topTags function, and those
with a false discovery rate (FDR) < 0.05 (Benjamini and Hochberg, 1995) are highlighted
on a plot of log-fold-change versus log-counts-per-millions by the plotSmear function.

# Select hairpins and samples relevant to plate 1
seltflr = plateinfo == "247-0001"
seltflc = x$samples$Experiment == "TF1"

# Subset DGEList
x1 = x[seltflr, seltflc]
x1$samples$group = factor(rep(c("TF1_Day2", "TF1 Day14"), times = 3))

# Make an MDS plot to visualise relationships between replicate samples

par(mfrow = c(1, 2))

plotMDS(x1, labels = x18$samples$group, col = rep(1:2, times = 3), main = "Small screen: MDS Plot")
legend("topright", legend = c¢("Day2", "Day14"), col = 1:2, pch = 15)

# Begin differential representation analysis Estimate dispersions
x1 = estimateDisp(x1)

## Design matrix not provided. Switch to the classic mode.
sqrt(x1$common.dispersion)

#4 [1] 0.103

# Assess differential representation between Day 14 and Day 2 samples using classic ex-
act

i+ testing methodology in edgeR

de.14vs2 = exactTest(x1, pair = ¢("TF1_Day2", "TF1_Day14"))

# Show top ranked hairpins
topTags(de.14vs2)

#7+ Comparison of groups: TF1 Dayl4-TF1 Day2

s 1D Sequences Plate logFC logCPM PValue FDR

## Hairpinl Hairpinl CTCAGGACTTTGCAGCCAT 247-0001 -0.567 13.0 1.42¢-
05 0.00111

## Hairpin88 Hairpin88 CTGTGGTGCTTATTATTTA 247-0001 0.506 13.3 2.52e-
05 0.00111

## Hairpin2 Hairpin2 CAGTGATGCTCAAACAGAA 247-0001 -0.460 13.3 1.30e-
04 0.00383

## Hairpinl5 Hairpin1l5 CCAGCCCAATCACTGTGTA 247-0001 -0.416 13.5 4.72¢-
04 0.01038

## Hairpin29 Hairpin29 CTATATTCCTTGTGTAATT 247-0001 0.388 13.7 6.88e-
04 0.01038

#+# Hairpin37 Hairpin37 CCTTGAAATGTAAATAACT 247-0001 0.404 13.4 7.08¢-
04 0.01038
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#4+ Hairpin64 Hairpin64 GCCTTTGTATATATCTGTA 247-0001 0.457 12.6 8.96e-
04 0.01127
44 Hairping6 Hairpin86 CTTAGAAAGGCACCTAGAA 247-0001 0.401 13.1 1.39-
03 0.01409
## Hairpinll Hairpinll CAAAGGAATGTATATACTA 247-0001 0.358 13.8 1.44e-
03 0.01409
## Hairpin28 Hairpin28 GAACTCCAGACAGAACCAA 247-0001 -0.374 13.4 1.72e¢-
03 0.01516

# Select hairpins with FDR < 0.05 to highlight on plot
thresh = 0.05

top2 = topTags(de.14vs2, n = Inf)

top2ids = top28$table[top2$tableSFDR, < thresh, 1]

# Plot logFC versus logCPM

ylim = ¢(-1.5, 1.5)

plotSmear(de.14vs2, de.tags = top2ids, pch = 20, cex = 0.6, ylim = ylim, main = "Small screen: logFC vs logCPM")
abline(h = ¢(-1, 0, 1), col = c¢("dodgerblue", "yellow", "dodgerblue"), lty = 2)
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Looking at the MDS plot we see that the replicate samples cluster reasonably well in dimension
1 (Day 14 samples tend to be on the left and Day 2 samples on the right of the plot).

Summary: In this small screen, the variation between replicates samples is quite small
(biological coefficient of variation ~ 10%) which means we are able to detect a number of
hairpins with subtle fold-change and a small FDR.

3 Analysis of a second small shRNA-seq screen

In the next screen, there are biological replicates of 4 different experimental groups (Day2,
Dayl10, Day5 GFP- and Day5 GFP+). Below we read in the raw counts from the file
screen2.fastq. We search for all barcodes and hairpins listed in the files Samples2.txt and
Hairpins2.txt respectively. This unpublished data set has been anonymised.

Since we have more than 2 groups, we perform a generalized linear model analysis in edgeR
(McCarthy et al. 2012) on this data set. We once again use the processAmplicons function
to process the raw sequence data from this screen.
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# Read in sample & hairpin information
sampleanno = read.table("Samples2.txt", header = TRUE, sep = "\t")
sampleanno

## 1D Sequences group Replicate

##1 3 GAAAG Day?2 1
##2 6 GAACC Day10 1
##3 9 GAAGA Day5GFPneg 1
## 4 16 GAATT Day5GFPpos 1
#4 5 18  GACAC Day?2 2
##6 21  GACCA Day10 2
#4 7 28  GACGT Day5GFPneg 2
## 8 31  GACTG Day5GFPpos 2
##9 33 GAGAA Day2 3
## 1040 GAGCT Day10 3
## 1143  GAGGG Day5GFPneg 3
## 1246  GAGTC Day5GFPpos 3

hairpinseqs = read.table("Hairpins2.txt", header = TRUE, sep = "\t")
hairpinseqs[1:5, |

H#HH# ID Sequences Gene

#4# 1 Controll TCTCGCTTGGGCGAGAGTAAG 2
## 2 Control2 CCGCCTGAAGTCTCTGATTAA 2
## 3 Control3 AGGAATTATAATGCTTATCTA 2
## 4 Hairpinl AAGGCAGAGACTGACCACCTA 4
## 5 Hairpin2 GAGCGACCTGGTGTTACTCTA 4

# Process raw sequences from fastq file
x2 = processAmplicons("screen2.fastq", barcodefile = "Samples2.txt", hairpinfile = "Hair-
pins2.txt",

verbose = TRUE)

#+# -- Number of Barcodes : 12

#4 -- Number of Hairpins : 137

#+# Processing reads in screen2.fastq.

#+4 -- Processing 10 million reads

#+4 -- Processing 20 million reads

#+4 -- Processing 30 million reads

#4 -- Processing 40 million reads

#+# Number of reads in file screen2.fastq : 38293297

##

#4 The input run parameters are:

#4 -- Barcode: length 5

#4 -- Hairpin: length 21

## -- Mismatch in barcode/hairpin sequences not allowed.

##

## Total number of read is 38293297

#+# There are 38116328 reads (99.5379 percent) with barcode matches
## There are 14872258 reads (38.8378 percent) with hairpin matches
## There are 14871955 reads (38.8370 percent) with both barcode and hairpin matches
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Running the above code takes around 2 minutes and uses 600Mb of RAM. In this screen,
although we have a high proportion of sample indexes matching (> 99%), only a fairly low
proportion of reads (~ 38%) have a hairpin match, indicating that there is likely to be an
issue with contamination in this screen.

In spite of this, we continue our analysis to look for hairpins that are relatively more or less
abundant in a comparison of the Day5 GFP+ versus the Day5 GFP- replicate samples. We
filter out hairpins with low counts (hairpins with at least 0.5 counts per million in at least
3 samples were retained) and plot the overall number of reads per sample or per hairpin in

barplots.

x2

## An object of class "DGEList"

#+4 $counts

HH 3 6 9 16 18 21 28 31 33 40 43 46

#4+ Controll 22647 26316 36885 290731 35158 49298 10611 99557 51758 36068 103077 67752
#4+ Control2 5664 4623 7381 5010 4937 4163 18821 14113 7578 4952 5541 2883
#4# Control3 16426 33270 36925 53701 11526 37385 457414 48190 25650 19969 37524 19142
## Hairpinl 22359 7597 6230 3773 14096 10251 7451 20798 26898 3697 16464 9829
## Hairpin2 9593 4515 1563 918 4658 3593 2865 4928 6369 497 7384 1024
#4# 132 more rows ...

##

## $samples
#+4 1D lib.size norm.factors group Replicate

441 3 1171539 1 Day?2 1
#4# 2 6 1084243 1 Day10 1
## 3 9 685508 1 Day5GFPneg 1
## 416 680275 1 Day5GFPpos 1
#4518 895803 1 Day?2 2
#+4 7 more rows ...

##

#4+ $genes

stk 1D Sequences Gene

#+4 Controll Controll TCTCGCTTGGGCGAGAGTAAG 2
#+# Control2 Control2 CCGCCTGAAGTCTCTGATTAA 2
## Control3 Control3 AGGAATTATAATGCTTATCTA 2
## Hairpinl Hairpinl AAGGCAGAGACTGACCACCTA 4
#+# Hairpin2 Hairpin2 GAGCGACCTGGTGTTACTCTA 4
#4 132 more rows ...

# Filter hairpins with low counts
sel = rowSums(cpm (x2$counts)>0.5)>=3
x2 = x2[sel,]

# Plot number of hairpins that could be matched per sample

# and total for each hairpin across all samples

par(mfrow=c(2,1))

barplot(colSums(x2$counts), las=2, main="Counts per index", cex.names=0.5, cex.axis=0.8)
barplot(rowSums(x2$counts), las=2, main="Counts per hairpin", cex.names=0.5, cex.axis=0.8)

10
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Counts per index

2000000 —

1500000 —

1000000 —

500000 —

o -

1
1
2
2
3
33
40
43
46

Counts per hairpin

8e+05 —

6e+05 —

4e+05 —

2e+05 —

0e+00 —

Next we make a multidimensional scaling plot to assess the consistency between replicate
samples. A design matrix is set up for the GLM analysis, and the hairpin-specific variation is
estimated and plotted (while taking into account the group structure).

We use the function glmFit to fit the hairpin-specific models and glmLRT to do the testing
between the Day 5 GFP+ and Day 5 GFP- samples. The top ranked hairpins are listed
using the topTags function and hairpins with FDR < 0.05 (Benjamini and Hochberg, 1995)
are highlighted on a plot of log-fold-change versus log-counts-per-millions by the plotSmear
function.

# Make an MDS plot to visualise relationships between replicate samples

par(mfrow = c(1, 3))

plotMDS(x2, labels = x2$samples$group, col = rep(1:4, times = 3), main — "An-
other small screen: MDS Plot")

legend("topright", legend = c("Day2", "Day10", "Day5-", "Day5+"), col = 1:4, pch = 15)

# Begin differential representation analysis We will use GLMs in edgeR in this case since
# there are more than 2 groups Set up design matrix for GLM

des = model.matrix(~x2$samples$group)

des

## (Intercept) x2$samples$groupDay?2 x2$samples$groupDay5GFPneg x2$samples$groupDay5GFPpos
441 1 1 0 0
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44 2 1 0 0 0
44 3 1 0 1 0
#4 4 1 0 0 1
ST 1 1 0 0
44 6 1 0 0 0
4 7 1 0 1 0
44 8 1 0 0 1
#4419 1 1 0 0
44 10 1 0 0 0
#4511 1 0 1 0
#4412 1 0 0 1
## attr(,"assign")

44110111

## attr(,"contrasts")
#+# attr(,"contrasts")$x2$samples$group
## [1] "contr.treatment"

# Estimate dispersions
xglm = estimateDisp(x2, des)
sqrt(xglm$common.disp)

44 [1] 0.593

# Plot BCVs versus abundance
plotBCV (xglm, main = "Another small screen: BCV Plot")

# Fit negative bionomial GLM

fit = glmFit(xglm, des)

# Carry out Likelihood ratio test

Irt = glmLRT(fit, contrast = ¢(0, 0, -1, 1))

# Show top ranked hairpins

topTags(Irt)

#74 Coefficient: -1*x2$samples$groupDay5GFPneg 1*x2$samples$groupDay5GFPpos

Sl ID Sequences Gene logFC logCPM LR PValue FDR

44 Hairpin67 Hairpin67 AAAAGCAGTTCTCAAGATCTA 32 3.43 14.64 23.08 1.55¢-
06 0.000204

44 Hairpin92 Hairpin92 AAGAGGATGAAGACCTGCTTA 38-3.26 13.42 11.03 8.97¢-
04 0.058749

44 Hairpin57 Hairpin57 CTGATTGTTGACAGTGTCAAA 26-2.77 12.89 8.25 4.07e-
03 0.177527

#+# Controll Controll TCTCGCTTGGGCGAGAGTAAG 2 2.24 16.13 7.73 5.44e-

03 0.178272

#+# Controld Control3 AGGAATTATAATGCTTATCTA 2-1.92 15.84 5.47 1.94e-

02 0.474612

#+4 Hairpin42 Hairpind2 CTGGTATGTCTTGGAGAGATA 20-1.06 11.44 5.27 2.17e-

02 0.474612

44 Hairpin39 Hairpin39 TAGCATGGATATGGAGTTAAA 19 2.33 8.03 4.85 2.77¢-

02 0.517038

44 Hairpin54 Hairpin54 AGGGTGTCTATTTGTCTTCAA 24 2.97 11.93 4.62 3.16e-

02 0.517038

12
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#+4 Hairpin97 Hairpin97 CCGCACTTACTCCAAGTTCAA 5 1.11 13.24 4.11 4.28¢-
02 0.622324

#+4 Hairpind9 Hairpind9 AAGAGGAAGAAGGCAAGTTTA 20-0.83 12.14 3.63 5.67¢-
02 0.742544

# Select hairpins with FDR < 0.05 to highlight on plot
thresh = 0.05

top2 = topTags(Irt, n = Inf)

top2ids = top2$table[top2$tableSFDR < thresh, 1]

# Plot logFC versus logCPM
plotSmear(lrt, de.tags = top2ids, pch = 20, cex = 0.6, main = "Another small screen: logFC vs logCPM")

abline(h = ¢(-1, 0, 1), col = c¢("dodgerblue", "yellow", "dodgerblue"), lty = 2)

Another small screen: MDS Plot Another small screen: BCV Plot Another small screen: logFC vs logCPM
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The biological coefficent of variation (BCV) plot (middle panel) summarises the variability
in the screen as a functon of hairpin abundance. These plots tend to have a characteristic
shape of decreasing variability as hairpin abundance increases, which is similar to what is
observed for other applications such as RNA-seq. The individual black points show hairpin-
specific (referred to as ‘Tagwise’ variability, while the blue line shows the trend value as
hairpin abundance changes (‘Trended’) and the red line is the common value (calculated by
assuming all counts come from the same hairpin).

Summary: In this second small screen, the variation between replicate samples is much
higher than in the first one (biological coefficient of variation ~ 62%) which limits our ability
to detect any subtle changes. As a result we find only one hairpin with a FDR < 0.05 and a
log-fold-change of 3.57.

4 Analysis of a larger shRNA-seq screen

In the third example, a library of around 1,100 hairpins were screened in a time-course
experiment, where samples were collected over a period of 8 days. Multiple hairpins per gene
(generally between 3-6) were included in this collection. Below we read in the raw sequences
from the file screen3.fastq and search for matches with sample indexes and hairpins listed in
the files Samples3.txt and Hairpins3.txt respectively using the processAmplicons function to
give us a DGEList of counts. This unpublished data set has been anonymised.

# Read in sample & hairpin information
sampleanno = read.table("Samples3.txt", header = TRUE, sep = "\t")
sampleanno

HH ID Sequences
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## 1 Passagel AGCAC
## 2 Passage2 AGCGT
## 3 Passage3 AGGAA
## 4 Passaged AGGGG
## 5 Passaged  AGTAT
#+# 6 Passage8 AGTGC
## 7 Passagell  ATACA
## 8 Passageld  ATATG

hairpinseqs = read.table("Hairpins3.txt", header = TRUE, sep = "\t")
hairpinseqs[1:5, |

H#H# ID Sequences Gene

## 1 Hairpinl CAGGTACAAAGATGGTTGCGA
## 2 Hairpin2 CTGGTCTTACCCTGACACCAA
## 3 Hairpin3 AAGCCCTGGGTTCCTGTTCTA
## 4 Hairpind GAGCACAGAGATGACGAGCGA
## 5 Hairpind TTCCGAGAGTTGGAGCAAGAA

_ g =P

# Process raw sequences from fastq file
x3 = processAmplicons("screen3.fastq", barcodefile = "Samples3.txt", hairpinfile = "Hair-
pins3.txt",

verbose = TRUE)

## -- Number of Barcodes : 8

#+4 -- Number of Hairpins : 1153

#+# Processing reads in screen3.fastq.

#4 -- Processing 10 million reads

#+4 -- Processing 20 million reads

#+# -- Processing 30 million reads

#+4 -- Processing 40 million reads

#+4 -- Processing 50 million reads

#+4 -- Processing 60 million reads

#4 -- Processing 70 million reads

#+# -- Processing 80 million reads

#+# -- Processing 90 million reads

#+4 -- Processing 100 million reads

#+4 -- Processing 110 million reads

#4 -- Processing 120 million reads

#+4 -- Processing 130 million reads

#+4 -- Processing 140 million reads

#+# Number of reads in file screen3.fastq : 130090268

##

#+# The input run parameters are:

#4 -- Barcode: length 5

#+4 -- Hairpin: length 21

#4 -- Mismatch in barcode/hairpin sequences not allowed.

##

#+# Total number of read is 130090268

## There are 99766841 reads (76.6905 percent) with barcode matches
#+# There are 30956029 reads (23.7958 percent) with hairpin matches
#+# There are 30471462 reads (23.4233 percent) with both barcode and hairpin matches
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Running the above code takes around 6 minutes and uses 1G of RAM. Although the proportion
of sequences that match is low (~ 23% to the hairpin sequences and ~23% with both an
index and a hairpin match), this was expected, as only around 40% of the sequencing run
was dedicated to this screen. The remaining data relates to another project.

As before, we filter out hairpins with low counts (hairpins with at least 0.5 counts per million
in at least half of the samples were retained) and plot the overall number of reads per sample
or per hairpin in barplots.

x3

## An object of class "DGEList"

## $counts

s Passagel Passage2 Passage3 Passaged Passaged Passage8 Passagell Passagel4
#+# Hairpinl 9544 3271 1477 547 508 1717 1932 2005

## Hairpin2 8615 3550 1456 1504 1680 1323 2858 2376

#4 Hairpin3 7306 991 1166 383 607 103 658 177

#4 Hairpind 8763 1169 3009 2434 2015 1373 5312 11285
#+# Hairpind 7913 3117 4668 1949 1642 2482 2062 2810

#+# 1148 more rows ...

##

## $samples

H#H ID group lib.size norm.factors
#+# Passagel Passagel 1 6506764 1
#+# Passage2 Passage2 1 2879384 1
#+4 Passage3 Passage3 1 5056008 1
## Passaged Passaged 1 3073676 1
## Passaged Passaged 1 2664513 1
## Passage8 Passage8 1 2971301 1
#+# Passagell Passagell 1 3134600 1
#+4 Passageld Passageld 1 4185216 1
##

#4 $genes

HH#H ID Sequences Gene

#+# Hairpinl Hairpinl CAGGTACAAAGATGGTTGCGA
## Hairpin2 Hairpin2 CTGGTCTTACCCTGACACCAA
## Hairpin3 Hairpin3 AAGCCCTGGGTTCCTGTTCTA
## Hairpind Hairpind GAGCACAGAGATGACGAGCGA
## Hairpin5 Hairpind TTCCGAGAGTTGGAGCAAGAA
#+ 1148 more rows ...

,_;HHHH

# Filter hairpins with low counts
sel = rowSums(cpm(x3$counts) > 0.5) >= 4
x3 = x3[sel, |

# Plot number of hairpins that could be matched per sample and total for each hairpin

# across all samples

par(mfrow = c(2, 1))

barplot(colSums(x3$counts), las = 2, main = "Counts per index", cex.names = 0.5, cex.axis = 0.8)
barplot(rowSums(x3$counts), las = 2, main = "Counts per hairpin", cex.names = 0.5, cex.axis = 0.8)
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Counts per index
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We normalize the counts using the TMM method (Robinson and Oshlack, 2010) and make a
multidimensional scaling plot as before. The design matrix for this experiment consists of a
model with a slope and intercept. Hairpins with an increasing or decreasing trend over time
are of interest. The hairpin-specific dispersion is estimated and plotted. We use the function

glmFit to fit hairpin-specific models and glmLRT to test whether the slope is different to
zero.

The top ranked hairpins are listed using the topTags function and hairpins with FDR <
0.05 (Benjamini and Hochberg, 1995) are highlighted on a plot of log-fold-change versus
log-counts-per-millions by the plotSmear function.

Carry out normalization using TMM
x3 = calcNormFactors(x3, method = "TMM")

# Make an MDS plot to visualise relationships between replicate samples
par(mfrow = c¢(1, 3))
plotMDS(x3, main = "Larger screen: MDS Plot")

# Begin differential representation analysis We will use GLMs in edgeR in this case since

# the experimental design is a time course with changes expected over time i.e. model is y
— intercept + slope*time Set up design matrix for GLM

des = model.matrix(~seq(1:8))

des

16



Analysing data from pooled genetic sequencing screens using edgeR

##  (Intercept) seq(1:8)
sl ] 1
## 2
## 3
## 4
##5
## 6
#H# T
H## 8 1
## attr(,"assign")
## (1101

colnames(des)[2] = "Slope"

e e e

1
2
3
4
)
6
7
8

# Estimate dispersions
xglm = estimateDisp(x3, des)
sqrt(xglm$common.disp)

44 1] 0.629

# Plot BCVs versus abundance
plotBCV (xglm, main = "Larger screen: BCV Plot")

# Fit negative bionomial GLM
fit = glmFit(xglm, des)

# Carry out Likelihood ratio test
Irt = glmLRT(fit, coef = 2)

# Show top ranked hairpins

topTags(Irt)

#4# Coeflicient: Slope

it ID Sequences Gene logFC logCPM LR PValue FDR
44 Hairpin648 Hairpin648 AAGAGCTTTGTTAGACAACAA 109 0.598 10.63 62.9 2.22¢-
15 2.03e-12

## Hairpin726 Hairpin726 AACATTAACAGTGTTGAGATA 121 0.654 9.49 38.3 6.22¢-
10 2.84e-07

## Hairpin807 Hairpin807 CAGAAATTATGTGACTATATA 133 0.620 13.91 36.8 1.28e-
09 3.91e-07

44 Hairpin520 Hairpin520 CAGACTATGAGTCTAGTTTAA 86 0.499 12.39 34.4 4.43¢-
09 1.01e-06

## Hairpin79 Hairpin79 CTCCAGTGTTCTGTTAATATT 17 0.508 13.58 33.7 6.46e-
09 1.18e-06

44 Hairpin248 Hairpin248 CAGAACAGAGGTACATTATAA 44 0.520 11.47 29.2 6.48e-
08 9.86e-06

44 Hairpin810 Hairpin810 AAGAAAGTTCTTACAACGAAA 1390.496 10.71 27.8 1.38e-
07 1.80e-05

4+ Hairpin241 Hairpin241 CTCCGAGACTATCAGAAGATA 43 0.496 10.49 25.9 3.64e-
07 4.12e-05

#+4 Hairpin336 Hairpin336 ATCCAATGTGTTCCTTTAATA 580.389 11.54 25.6 4.10¢-
07 4.12e-05

#4+ Hairpin385 Hairpin385 CTCAAGTGTAGATACAGATTA 650.396 11.16 25.54.51e-
07 4.12e-05
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# Select hairpins with FDR < 0.05 to highlight on plot
thresh = 0.05

top3 = topTags(Irt, n = Inf)

top3ids = top3$table[top3$tableSFDR < thresh, 1]

# Plot Slope versus logCPM
plotSmear(lrt, de.tags = top3ids, pch = 20, cex = 0.6, main = "Larger screen: Slope vs logCPM")
abline(h = ¢(-1, 0, 1), col = c¢("dodgerblue", "yellow", "dodgerblue"), Ity = 2)

Larger screen: MDS Plot Larger screen: BCV Plot Larger screen: Slope vs logCPM
2 assager
- 31
2 g 51
. Passagez passaget] £
£ Passage3 Passagell H 2
g 2 o g =
El Passages ] g g4
g 2| g
Passages 2 77
Passaged 7
T T T T T T T T T T T T T T
-10 -0.5 0.0 05 10 15 0 5 10 15 o 5 10 15

Leading logFC dim 1 Average log CPM Average logCPM

We finish this analysis by summarising data from multiple hairpins in order to get a gene-by-
gene ranking, rather than a hairpin-specific one. The roast gene-set test (Wu et al. 2010) is
used for this purpose. In the screen setting, the collection of individual hairpins that target a
specific gene can be regarded as a ‘set’. This analysis relies on the availablity of an annotation
that indicates which gene each hairpin targets (this has been recorded in the ‘Gene’ column of
the hairpin annotation in this example). In the code below, we restrict our analysis to genes
with greater than 3 hairpins. A barcode plot, highlighting the rank of hairpins for a given
gene relative to the entire data set is generated for the top-ranked gene (119). The hairpins
for this gene tend to increase in abundance over time, with 2/3 of the hairpins contributing
to the test result (FDR=0.0549). Note that a gene-level analysis like this is only possible
within the GLM framework.

# Carry out roast gene-set analysis
genesymbols = x38genes], 3]

genesymbollist = list()
unq = unique(genesymbols)
unq = ung[lis.na(unq)]
for (i in unq) {
sel = genesymbols == i & lis.na(genesymbols)
if (sum(sel) > 3)
genesymbollist[[i]] = which(sel)

}

# Run mroast for all genes
set.seed(6012014)
roast.res = mroast(xglm, index = genesymbollist, des, contrast = 2, nrot = 9999)

# Display results for top ranked genes
roast.res[1:20, 1:6]

H#HH# NGenes PropDown PropUp Direction PValue FDR
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44 set096 6 0.500 0.000  Down 0.0002 0.0203
#4 setlld 6 0.000 0.667 Up 0.0006 0.0371
#4 setl5l 7 0.000 0.571 Up 0.0012 0.0517
44 set024 8 0.000 0.625 Up 0.0021 0.0551
#4 set122 4 0.750 0.250  Down 0.0023 0.0551
44 set039 6 0.333 0.000  Down 0.0025 0.0551
#4 setldl 4 0.000 1.000 Up 0.0032 0.0565
#4 set12l 5 0.200 0.600 Up 0.0034 0.0565
44 set023 8  0.500 0.250  Down 0.0042 0.0622
#4 set009 8  0.250 0.500 Up 0.0055 0.0714
#4 set007 8 0.000 0.500 Up 0.0063 0.0714
#4 setld3 8 0.375 0.000  Down 0.0064 0.0714
#4 setll0 8 0.625 0.125  Down 0.0071 0.0732
#4 set003 8  0.000 0.875 Up 0.0085 0.0815
#4 set068 7 0.429 0.000  Down 0.0096 0.0851
#4 setl27 6 0.000 0.333 Up 0.0111 0.0851
#4 set036 5 0.400 0.000  Down 0.0113 0.0851
#4 set019 8 0.125 0.250 Up 0.0114 0.0851
#4 set086 6 0.000 0.333 Up 0.0135 0.0942
44 setlod 6 0.167 0.500 Up 0.0147 0.0942

# Make a barcode plot for an example that ranks highly Gene 119 - multiply slopes by 7 to

# convert into logFCs over time-course

par(mfrow = c(1, 1))

barcodeplot(7 * Irt$table$logFC, index = genesymbollist[[119]], main = "Barcodeplot for Gene 119",
labels = c¢("Negative logFC", "Positive logFC"))

Barcodeplot for Gene 119

o Enrichment 3 5
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Statistic

5 Analysis of shRNA-seq screen from Zuber et al. (2011)

We next look at some published data from Zuber et al. (2011). The goal of this screen
was to identify new drug targets for acute myeloid leukaemia (AML). A custom library of >
1,000 hairpins targeting 240 genes known to regulate chromatin structure were screened in
a mouse model of AML. Between 3 and 6 distinct hairpins per gene were available.
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The screen used leukaemia cells from an inducible mouse model and sampled DNA from
these cells post infection (Day 0) and at Day 14. Hairpins that consistently decrease in
representation across the biological replicate samples were of interest.

Below we take a merged table of counts obtained from the Supplementary Materials of
Zuber et al. (2011) and analyse it using edgeR. We begin with a hairpin-level analysis to
rank individual hairpins using GLMs. Diagnostic plots and a list of top hairpins is given.

# Read in the table of counts
dat = read.table("zuber screen.txt", sep = "\t", header = TRUE, as.is = TRUE)

dat[1, |

HH shRN AID GeneSymbol EntrezID Pool shRNA start Mean T14.T0T14.T0 A T14.TO B
## 1 100043305.158 100043305 100043305 LIB 158 0.2 0.269 0.132

## Reads A TO Reads A T14 Reads B TO Reads B T14

#4#1 34133 9171 31158 4111

# Make DGE list containing hairpin counts
x4 = new("DGEList")
x4$counts = as.matrix(dat[, 9:12])

/£ Remove hairpins with zero counts in all samples
selnonzero = rowSums(x4$counts) = 0
x4$counts = x4$counts|selnonzero, |

# Add sample annotation data

x4$samples = data.frame(SampleID = colnames(x4$counts), group = as.factor(rep(c("Day0", "Day14"),
times = 2)), lib.size = colSums(x4$counts))

x4$samples$norm.factors = 1

x4$genes = dat[selnonzero, 1:5]

rownames(x4$counts) = dat[selnonzero, 1]

dim(x4)

#4 [1] 1095 4

# Make an MDS plot to visualise relationships between replicate samples

par(mfrow = c(1, 3))

plotMDS(x4, labels = gsub("Reads_","", colnames(x4)), col = ¢(1, 2, 1, 2), main = "Zu-
ber: MDS Plot")

legend("topright", legend = c¢("Day 0", "Day 14"), col = 1:2, pch = 15)

# Assess differential representation between Day 14 and Day 0 samples using GLM in edgeR
# Set up design matrix for GLM

des = model.matrix(~x4$samples$group)

colnames(des)[2] = "Day14"

des

## (Intercept) Dayl4
441 1 0
44t 2 11
44 3 1 0
#4 4 11
#4 attr(,"assign")

44 (110 1

## attr(,"contrasts")
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#+# attr(,"contrasts")$x4$samples$group
## [1] "contr.treatment"

#+ Estimate dispersions
xglm = estimateDisp(x4, des)

# Plot BCVs versus abundance
plotBCV (xglm, main = "Zuber: BCV Plot")

#+ Fit negative bionomial GLM
fit = glmFit(xglm, des)

# Carry out Likelihood ratio test
Irt = glmLRT(fit, 2)

# Show top ranked hairpins
topTags(Irt, n = 15)

#+# Coeflicient: Day14

HH shRN AID GeneSymbol EntrezID Pool shRNA start logFC logCPM LR
#4+ Rpa3.276 Rpa3.276 Rpa3 68240 PC 278 -13.59 9.66 117.1
#4+ Suzl2.1842  Suzl2.1842 Suzl2 52615 LIB 1842 -17.54 9.22 102.4
#4+ Setd4.1308  Setd4.1308 Setd4 224440 LIB 1308 -15.30 9.30 96.5
#4+ Pcna.1186 Pcna.1186 Pcna 18538 PC 1186 -17.42 9.10 93.0
#4+ Supt16h.1672 Supt16h.1672 Suptl6h 114741 LIB 1672 -17.13 8.81 72.4
## Setmar.1589 Setmar.1589  Setmar 74729 LIB 1589 6.02 15.35 71.8
#4+ Rpa3.561 Rpa3.561 Rpa3 68240 PC 561 -7.73 12.32 684
#4+ Brd3.187 Brd3.187 Brd3 67382 LIB 187 -14.83 8.83 67.9
#4 Rpa3.455 Rpa3.455 Rpa3 68240 PC 457 -5.76 10.59 62.0
#4+ Brd4.2097 Brd4.2097 Brd4 57261 LIB 2097 -16.75 8.43 57.6
#4+ Polr2b.2176 Polr2b.2176  Polr2b 231329 PC 2176 -14.56 8.56 57.5

#4 Wdr5.1765 Wdr5.1765 Wdr5 140858 LIB 1765 -16.72  8.40 56.7
## Aof2.2857 Aof2.2857 Aof2 99982 LIB 2857 -16.67 8.35 55.8

#+4 Pcmt1.840 Pemt1.840 Pemtl 18537 LIB 840 4.79 14.19 54.7
#4# Jmjdla.371  Jmjdla.371  Jmjdla 104263 LIB 371 -16.62 8.29 52.8
HH# PValue FDR

44 Rpa3.276  2.75e-27 3.0le-24
#4 Suzl2.1842 4.65¢-24 2.54e-21
#4 Setd4.1308  8.74e-23 3.19e-20
#4 Pcna.1186  5.11e-22 1.40e-19
## Supt16h.1672 1.77e-17 3.88¢-15
44 Setmar.1589 2.38¢-17 4.34e-15
#4# Rpa3.561  1.35¢-16 2.11e-14
#4# Brd3.187  1.73e-16 2.37e-14
## Rpa3.455  3.51le-15 4.27¢-13
44 Brd4.2097  3.15e-14 3.34e-12
#4 Polr2b.2176 3.35e-14 3.34e-12
#4 Wdr5.1765  5.19e-14 4.74e-12
#4 Aof2.2857  8.00e-14 6.74e-12
#4 Pemt1.840  1.43e-13 1.12e-11
#4 Jmjdla.371 3.7le-13 2.7le-11

# Select hairpins with FDR < 0.0001 and logFC < -1 to highlight on plot
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thresh = 1le-04

lIfc =-1

top = topTags(lrt, n = Inf, sort.by = "logFC")
sum(top$table[, 9] < thresh)

44 [1] 195

sum (top$table[, 9] < thresh & top$table[, 6] < lfc)

#+4 [1] 183
topids = as.character(top$table[top$tableSFDR < thresh & top$table$logFC < lfc, 1])

# Make a plot of logFC versus logCPM
plotSmear(lrt, de.tags = topids, pch = 20, cex = 0.6, main = "Zuber: logFC vs logCPM")

Zuber: MDS Plot Zuber: BCV Plot Zuber: logFC vs logCPM

| T14 = Day0 Tagwise
~ T = Day 14 ) | —— Common ©
—— Trend
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We finish this analysis by summarising data from multiple hairpins in order to get a gene-
by-gene ranking, rather than a hairpin-specific one using the roast gene-set test (Wu et al.
2010). The gene Brd4 is examined first (this was reported as a key finding in the original
paper) followed by an analysis for all genes. Brd4 is also highly ranked in our analysis.

# Carry out roast gene-set analysis Begin with hairpins targeting Brd4
genesymbols = x4$genes|, 2]

brd4 = genesymbols == "Brd4"

set.seed(6012014)

roast(xglm, index = brd4, des, contrast = 2, nrot = 9999)

it Active.Prop P.Value
#+# Down 1 2e-04
## Up 0 1le+00
#+# UpOrDown 1 4e-04
#+4# Mixed 1 4e-04

# Make a barcode plot for Brd4
par(mfrow = c(1, 1))
barcodeplot(lrt$table$logFC, index = brd4, main = "Barcodeplot for Brd4 (Day14 ver-
sus Day0)",
labels = c¢("Negative logFC", "Positive logFC"))
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Barcodeplot for Brd4 (Day14 versus DayO0)
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# Repeat analysis for all genes using mroast
genesymbollist = list()
for (i in unique(genesymbols)) genesymbollist[[i]] = which(genesymbols == i)

roast.res = mroast(xglm, index = genesymbollist, des, contrast = 2, nrot = 9999)
roast.res[1, |

#+4#  NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed
## Aurkb 6 0.833 0 Down 1e-04 0.00415 le-04 0.00311

# Display results for top ranked genes
roast.res|[1:20, 1:6]

e NGenes PropDown PropUp Direction PValue  FDR
#4+ Aurkb 6 0.833 0.0 Down 0.0001 0.00415
## Jhdmld 5 0.800 0.0 Down 0.0001 0.00415
## Cbx2 5 0.600 0.0 Down 0.0001 0.00415
#4+ Srcap 5 0.800 0.0 Down 0.0002 0.00934
## Polr2b 2 1.000 0.0 Down 0.0003 0.01012
## Ing2 5 1.000 0.0 Down 0.0004 0.01012
## Setd2 5 1.000 0.0 Down 0.0004 0.01012
## Hdacll 5 0.800 0.0 Down 0.0004 0.01012
## Brd4 5 1.000 0.0 Down 0.0005 0.01012
#4 Setd4 3 1.000 0.0 Down 0.0006 0.01012
#4# LOC100044324 5 0.800 0.2 Down 0.0006 0.01012
## Naplll 4 0.750 0.0 Down 0.0006 0.01012
## Sirth 4 0.500 0.0 Down 0.0006 0.01012
## Prdmll 4 1.000 0.0 Down 0.0007 0.01012
## Prmt2 4 0.500 0.0 Down 0.0007 0.01012
#4+ Hells 4 0.500 0.0 Down 0.0007 0.01012
#4+ Hdac9 5 1.000 0.0 Down 0.0009 0.01176
## Mecp2 4 0.750 0.0 Down 0.0009 0.01176
## Whsclll 5 0.800 0.0 Down 0.0011 0.01245
## Smarcad 5 1.000 0.0 Down 0.0012 0.01245
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6 Analysis of a large CRISPR-Cas9 knockout screen

Next we analyse data from a pooled screen that uses CRISPR-Cas9 (clustered regularly
interspaced short palindromic repeats-associated nuclease Cas9) knockout technology. In
this example, a library of around 64,000 sgRNAs (as used in Shalem et al. 2014) were
screened to look for genes that may lead to resistance from a particular drug.

Multiple single guide RNAs (sgRNAs) per gene (generally between 3-6) were included in the
screen. Below we read in the raw sequences from the paired end fastq files screen4_R1.fastq
and screen4__R2.fastq. This screen employed a dual indexing strategy where the first 8 bases
from each pair of reads contained an index sequence that uniquely identifies which sample a
particular sgRNA sequence originated from. Matches between sample indexes and sgRNAs
listed in the files Samples4.txt and sgRNAs4.txt were identified using the processAmplicons
function to produce a DGEList of counts. This unpublished data set has been anonymised.

# Read in sample & sgRNA information
sampleanno = read.table("Samples4.txt", header = TRUE, sep = "\t")
sampleanno[1:5, |

H#HH# ID Sequences SequencesReverse group Infection Replicate IndexF IndexR

#4 1A1 1 1 TAGATCGC TAAGGCGA Drug 1 1 1 1
#4 2 A2 1_2 TAGATCGC CGTACTAG Control 1 1 1 2
## 3 A3 1 3 TAGATCGC AGGCAGAA Drug 1 1 1 3
## 4 A4 1 4 TAGATCGC TCCTGAGC Control 1 1 1 4
##5A5 1 5 TAGATCGC GGACTCCT Drug 1 1 1 5
sgseqs = read.table("sgRNAs4.txt", header = TRUE, sep = "\t")

sgseqs|[1:5, |

st 1)) Sequences Gene

#4 1 sgRNA1 TACCCTGGGACTGTACCCCC 99

#4+ 2 sgRNA2 ACCCTTGCTGCACGACCTGC 99
#4# 3 sgRNA3 TCGCTCGCCCCGCTCTTCCT 99
#4# 4 sgRNA4 TGACGCCTCGGACGTGTCTG 19
#4 5 sgRNA5 CGTCATAGCCAATCTTCTTC 19

# Process raw sequences from fastq files
x4 = processAmplicons("screend R1.fastq", readfile2 = "screend R2.fastq", barcode-
file = "Samples4.txt",

hairpinfile = "sgRNAs4.txt", verbose = TRUE, plotPositions = TRUE)

## -- Number of Barcodes : 72
#4# -- Number of Hairpins : 64751
#4 Processing reads in screend R1.fastq and screend R2.fastq.
#+# -- Processing 10 million reads
#+4 -- Processing 20 million reads
#+4 -- Processing 30 million reads
#+4 -- Processing 40 million reads
#4 -- Processing 50 million reads
#+# -- Processing 60 million reads
#+4 -- Processing 70 million reads
#+4 -- Processing 80 million reads
#+4 -- Processing 90 million reads
#4 -- Processing 100 million reads
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#4+ Number of reads in file screen4d R1.fastq and screend R2.fastq: 99427748
##

#4 The input run parameters are:

## -- Barcode in forward read: length 8

#4 -- Barcode in reverse read: length 8

#4# -- Hairpin in forward read: length 20

#4 -- Mismatch in barcode/hairpin sequences not allowed.

##

#4# Total number of read is 99427748

## There are 68128813 reads (68.5209 percent) with barcode matches

## There are 62181626 reads (62.5395 percent) with hairpin matches

#+# There are 46529785 reads (46.7976 percent) with both barcode and hairpin matches

Barcode & Hairpin Position Paired Read Barcode Positions
~ ~
o o
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~ ~
o o
a &7 a &7
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o < s <
> >
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+ - + -
] 0]
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o l o
o o
+ - + -
8 T T T T T T 8 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
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The optional plotPositions argument produces a density plot indicating the position sequences
were found in each read. For dual indexing reads and paired end reads, two graphs are created
side-by-side, to show the sequence locations of both sets of barcodes.

Note that this dual indexing strategy requires an additional column named ‘SequencesRev’ in
the file that contains the sample annotation information. Also, readFile2 must be specified,
along with position information (barcodeStartRev, barcodeEndRev) for the second index
in the second read from each pair (in this case the index can be found in the first 8 bases).

We next filter out sgRNAs and samples with low numbers of reads.
x4

## An object of class "DGEList"
#4# $counts
44 Al 1 1A2 1 2A3 1 3A4 1 4A5 1 5A6 1 6A7 2 1A8 2 2A9 2 3A10 2 4All 2 5

##sgRNA1 0 14 0 0 3 37 1 55 0 24 0
##sgRNA2 0 18 0 0 1 23 0 2 0 2 0
#4#sgRNA3 0 54 0 0 4 52 2 100 0 64 0
##sgRNA4 0 32 0 0 3 5 2 57 0 55 0
##sgRNA5 0 7 0 O 1 3 0 3 0 5 1
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## A12 2 6A13 3 1A14 3 2A15 3 3A16 3 4A17 3 5A18 3 6A19 4 1A20 4 2A21 4 3
## sgRNA1 63 23 0 33 22 37T 0 39 0
## sgRNA2 43 27 0 28 27 31 1 23 0
## sgRNA3 115 62 0 65 26 64 0 44 0
## sgRNA4 58 48 0 52 20 28 0 4 0
##sgRNA5 5 0 3 0 3 1 7 0 1 0
##  A22 4 4A23 4 5A24 4 6B1 5 1B2 5 2B3 5 3B4 5 4B5 5 5B6_5 6B7 6 _1B8 6 2
##sgRNA1 40 1 66 3 5 5 29 11 5 5 4
44 sgRNA2 46 0 35 14 28 19 79 27 4 9 25
## sgRNA3 110 0 73 18 42 30 56 43 47 32 26
0
0

SR ==

## sgRNA4 95 110 17 13 13 25 12 23 10 11

## sgRNA5 8 3 0 5 13 15 8 27 6 9

## B9 6 3B10_6_4B11_6_5B12 6 _6B13_7 1Bl14 7 2B15 7 3B16_7 4B17_7 5B18 7 6
##sgRNA1 14 3 9 6 9 11 6 9 12 31

## sgRNA2 13 28 16 46 12 24 14 65 46 70

## sgRNA3 15 36 44 45 39 53 16 60 42 80

## sgRNA4 11 21 15 20 14 13 7 30 16 23

##sgRNA5 7 4 11 19 1 5 0 3 7 13

## B9 8 1B20 8 2B21 8 3B22 8 4B23 8 5B24 8 6A1 1 7TA2 1 8A3 1 9A7 2 TA8 2 8

#4+ sgRNA1 6 13 10 26 14 19 0 18 0 0 39
## sgRNA2 18 32 12 97 37 73 0 12 0 0 19
## sgRNA3 32 30 31 65 60 76 0 30 0 4 76
## sgRNA4 15 18 20 27 19 36 0 27 0 1 41

##sgRNA5 1 7 3 18 25 12 0 2 0 0 2

#4 A9 2 9AI3 3 TAI4 3 8Al5 3 9AI9 4 TA20 4 8A21 4 9B1 5 7B2 5 8B3 5 9B7 6_7
#4 sgRNA1 0 7 o0 0 3 0 6 6 5 11

#4 sgRNA2 0 5 0 0 17 0 10 20 10 11

## sgRNA3 0 330 1 39 0 10 19 25 20

#4 sgRNA4 0 34 0 1 3 0 10 9 9 8

## sgRNA5 0 9 0 0 0 0 0 9 4 4

## B8 _6_8B9 6 9BI13 7 TBl14 7 8B15 7 9B19 8 7B20 8 8B21 8 9

S O O OO

##sgRNA1 5 17 2 11 3 10 15 9
44 sgRNA2 23 7 7 22 17 20 22 11
#4 sgRNA3 14 31 32 38 25 29 18 17
44 sgRNA4 11 5 11 9 8 13 14 12
#4#sgRNA5 11 3 4 2 0 3 11 8

#+4 64746 more rows ...

##
#4+ $samples

#+4 1D lib.size norm.factors SequencesReverse group Infection Replicate IndexF IndexR,

## 1A1 1 1 223 1 TAAGGCGA Drug 1 1 1 1
##2A2 1 2 687528 1 CGTACTAG Control 1 1 1 2
## 3 A3 1 3 1485 1 AGGCAGAA Drug 1 1 1 3
##4A4 1 4 2550 1 TCCTGAGC Control 1 1 1 4
##5A5 1 5 71348 1 GGACTCCT Drug 1 1 1 5
#+4 67 more rows ...

##t

#4+ $genes

HH 1D Sequences Gene

## sgRNA1 sgRNA1 TACCCTGGGACTGTACCCCC 99
## sgRNA2 sgRNA2 ACCCTTGCTGCACGACCTGC 99
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#4 sgRNA3 sgRNA3 TCGCTCGCCCCGCTCTTCCT 99
#4# sgRNA4 sgRNA4 TGACGCCTCGGACGTGTCTG 19
#4 sgRNA5 sgRNA5 CGTCATAGCCAATCTTCTTC 19

#4 64746 more rows ...

table(x4$samples$group)

##

#+# Control Drug

HH#H B2 40

# Filter sgRNAs and samples with low counts Need a CPM greater than 5 in 15 or more sam-
ples

# to keep sgRNAs

selr = rowSums(cpm(x4$counts) > 5) >= 15

# Need at least 100,000 reads to keep a given sample
selc = colSums(x4$counts) >= le+05

x4 = x4[selr, selc]

# Set up drug treatment colours
cols = as.numeric(x4$samples$group) + 2

# Plot number of sgRNAs that could be matched per sample and total for each sgRNA across

# all samples

par(mfrow = ¢(2, 1))

barplot(colSums(x4$counts), las = 2, main = "Couunts per index", col = cols, cex.names = 0.5,
cex.axis = 0.8)

barplot(rowSums(x4$counts), las = 2, main = "Counts per sgRNA", cex.names = 0.5, cex.axis = 0.8)
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Next we make a multidimensional scaling plot to assess the consistency between replicate
samples. There is a clear separation between the two infections, indicating the need to
incorporate an effect for this in the GLM. A design matrix is set up for the GLM analysis,
and the sgRNA-specific variation is estimated and plotted (while taking into account both
drug treatment and infection number).

We use the function glmFit to fit the sgRNA-specific models and glmLRT to do the testing
between the drug treated and control samples. The top ranked sgRNAs are listed using the
topTags function and sgRNAs with FDR < 0.0001 (Benjamini and Hochberg, 1995) and log-
fold-change > 1 are highlighted on a plot of log-fold-change versus log-counts-per-millions by
the plotSmear function. Since this is a positive screen, we highlight over-represented sgRNAs
(i.e. those with positive log-fold-changes) since the model is parameterized to compare drug
treatment versus control (coefficient 2 in the design mtrix).

- Make an MDS plot to visualise relationships between replicate samples Set up infec-
tion #

colours
cols2 = x4$samples$Infection

par(mfrow = ¢(2, 2))

plotMDS(x4, col = cols, main = "Large sgRNA-seq screen: MDS Plot")
legend("topleft", legend = c¢("Control", "Drug"), col = c(3, 4), pch = 15)
plotMDS(x4, col = cols2, main = "Large sgRNA-seq screen: MDS Plot")
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legend("topleft", legend = c("Inf#1", "Inf#2"), col = c(1, 2), pch = 15)

# Begin differential representation analysis We will use GLMs in edgeR in this case since
# there are more than 2 groups Set up design matrix for GLM

treatment = as.factor(x4$samples$group)

infection = as.factor(x4$samples$Infection)

des = model.matrix(~treatment + infection)

des[1:5, |

## (Intercept) treatmentDrug infection2
#4 1 1 0 0

#4 2 1 0 0

44 3 1 0 0

4 4 1 0 0

44t 5 1 0 0

colnames(des)[2:3] <- ¢("Drug", "Infection2")

#+ Estimate dispersions
xglm = estimateDisp(x4, des)
sqrt(xglm$common.disp)

44 [1] 0.259

# Plot BCVs versus abundance
plotBCV (xglm, main = "Large sgRNA-seq screen: BCV Plot")

# Fit negative bionomial GLM
fit = glmFit(xglm, des)

# Carry out Likelihood ratio test
Irt = glmLRT(fit, coef = 2)

# Show top ranked sgRNAs

topTags(Irt)
#4# Coefficient: Drug
S ID Sequences Gene logFC logCPM LR  PValue FDR

#+4 sgRNA816 sgRNA816 TCCGAACTCCCCCTTCCCGA 269 4.35 7.32 682 2.33e-

150 1.31e-145

## sgRNA4070 sgRNA4070 GTTGTGCTCAGTACTGACTT 1252 2.92 7.99 662 6.06e-
146 1.71e-141

#4 sgRNA6351 sgRNA6351 AAAAACGTATCTATTTTTAC 1957 3.37 6.33 413 6.62e-
92 1.24e-87

## sgRNA12880 sgRNA12880 CTGCACCGAAGAGAGCTGCT 3979 2.83 7.03 317 7.09-
71 1.00e-66

## sgRNA23015 sgRNA23015 CAATTTGATCTCTTCTACTG 6714 3.12 4.82230 5.35e-
52 6.03e-48

#4 sgRNA62532 sgRNA62532 AAACACGTCCAGTGCAGCCC 19612 2.79 4.90 218 2.51e-
49 2.36e-45

## sgRNA3887 sgRNA3887 AACGCTGGACTCGAATGGCC 1194 2.31 5.32205 1.36e-
46 1.09e-42

#4 sgRNA38819 sgRNA38819 TACGTTGTCGGGCGCCGCCA 11531 2.42 6.53 204 2.62e-
46 1.85e-42
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#4 sgRNA19299 sgRNA19299 GGGGTCTTACCCGAGGCTCC 5732 1.95 5.64 203 4.46e-
46 2.79¢-42
#4 sgRNA52924 sgRNA52924 CCACCGCGTTCCACTTCTTG 16395 2.86 6.64 194 5.47¢-
44 3.08e-40

# Select sgRNAs with FDR < 0.0001 and logFC <= -1 to highlight on plot
thresh = 1le-04
lfc=1

top4 = topTags(Irt, n = Inf)
topdids = top4$table[top4$tableSFDR < thresh & top4$table$logFC >= lfe, 1]

# Plot logFC versus logCPM

plotSmear(lrt, de.tags = top4ids, pch = 20, cex = 0.6, main = "Large sgRNA-seq screen: logFC vs logCPM")

)

abline(h = ¢(-1, 0, 1), col = c¢("dodgerblue", "yellow", "dodgerblue"), Ity = 2)
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We finish this analysis by summarising data from multiple sgRNAs in order to get a gene-by-
gene ranking, rather than a sgRNA-specific one. The camera gene-set test (Wu and Smyth,
2012) is used for this purpose. As before, the collection of sgRNAs that target a specific gene
can be regarded as a ‘set’ In the code below, we restrict our analysis to genes with more
than 3 sgRNAs. A barcode plot, highlighting the rank of sgRNAs for a given gene relative
to the entire data set is generated for the top-ranked gene (11531). Abundance of sgRNAs
targeting this gene tends to increase with drug treatment (FDR=0.0003).
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# Carry out camera gene-set analysis
genesymbols = x4$genes|, 3]

genesymbollist = list()
unq = unique(genesymbols)
unq = unq|lis.na(ung)|
for (i in unq) {
sel = genesymbols == i & lis.na(genesymbols)
if (sum(sel) > 3)
genesymbollist|[i]] = which(sel)
}

## Run camera for all genes
camera.res = camera(xglm, index = genesymbollist, des, contrast = 2)

# Display results for top ranked genes
camera.res|1:10, |

H## NGenes Direction PValue FDR

#4 19612 5 Up 1.11e-08 6.14e-05
44 8370 4 Up 3.79-06 1.05¢-02
#4 8808 4 Up 1.88¢-05 3.14e-02
#4 11531 4 Up 2.27e-05 3.14e-02
44 3979 4 Up 2.89¢-05 3.19e-02
#4 10386 4 Up 1.30e-04 1.19-01
4410784 4 Up 1.74e-04 1.38¢-01
442005 4 Up 2.60e-04 1.76e-01
#4 4086 4 Up 2.87e-04 1.76e-01
#4 11412 4 Up 3.86e-04 2.13e-01

# Make a barcode plot for an example that ranks highly Gene 11531

par(mfrow = c¢(1, 1))

barcodeplot(lrt$table$logFC, index = genesymbollist[[11531]], main = "Barcodeplot for Gene 11531",
labels = c("Negative logFC", "Positive logFC"), quantile = ¢(-0.5, 0.5))

Barcodeplot for Gene 11531

o Enrichment 5 5

Negative logFC
43 — ———
Positive logFC

-2.46 —
-0.46 —
-0.30 —
-0.19 —
-0.10 —
-0.02 —
0.06 —
0.15 —
0.26 —
0.43 —

Statistic
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7 Analysis of a CRISPR-Cas9 knockout screen from Shalem
et al. (2014)

The final analysis is of a recently published CRISPR-Cas9 knockout screen published by
Shalem et al (2014).

The goal of the screen analysed below was to identify genes whose loss is involved in resistance
to vemurafenib (PLX) in a melanoma model. A genome-wide library of sgRNAs (~64,000)
targeting ~18,000 genes was used in the melanoma cell-line A375. Samples at baseline (Day
0), Day 7 and Day 14 for control (DMSO treated) and vemurafenib (PLX) were available.
sgRNAs/genes that consistently increase in representation in the PLX samples compared to
the DMSO samples in the biological replicates are of interest.

We thank Ophir Shalem and Feng Zhang for providing access to this data set, which was
downloaded from http://genome-engineering.org/gecko/?page_id=114.

We first read in the data downloaded from the URL above in preparation for an sgRNA-level
analysis. The data available has been normalized, and was rounded to ensure we are dealing
with integer values. A ceiling of 5000 was put on the counts (a small number sgRNAs had
values up to ~ 82,000). A multidimensional scaling plot was generated to see if the samples
cluster by treatment (DMSO/PLX for Day 7/Day 14).

/4 Read in the table of counts
shalem = read.table("norm read count A375", header=TRUE, sep="\t", as.is=TRUE)

counts = matrix(NA, nrow(shalem), 9)
for(i in 1:9)

counts|,i] = round(shalem|,-(1:3)]],i],0)
#4 Set max counts to 5000
counts|counts>5000] = 5000
colnames(counts) = colnames(shalem)[-(1:3)]
rownames(counts) = shalem[,2]
dim(counts)

#4 [1] 64076 9

t# Make DGE list containing sgRNA counts
x5 = new("DGEList")
x5$counts = counts

#+# Add sample annotation data
xb$samples = data.frame("SampleID"=colnames(x5$counts),
"group"=as.factor(c("Baseline", rep(c("Day7 DMSO", "Day14 DMSO", "Day7 PLX", "Dayl4 PLX"),¢
"lib.size"=colSums(x5$counts),
"norm.factors" = rep(1,9))
x5%genes = shalem][,1:3]
rownames(x5$genes) = shalem|,2]

# Filter sgRNAs with low counts
sel = rowSums(cpm(x5$counts)>5)>=2

x5 = x5[sel,]

#4 Plot Multi-dimensional scaling of data to visualise
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4 relationships between replicate samples
plotMDS(x5, labels=x5$samples$group, xlim=c(-2,4),
col=c(1,rep(c(2,3),each=4)), main="Shalem: MDS Plot")
legend("topright", legend=c("Baseline", "DMSO", "PLX"), col=1:3, pch=15)

Shalem: MDS Plot
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A design matrix is set up for the GLM analysis (McCarthy et al. 2012), and the sgRNA-
specific variation is estimated and plotted (while taking into account the group structure).
The baseline sample is used to estimate the intercept term in the model. We use the functions
glmFit to fit the sgRNA-specific models and glmLRT functions to do the testing between
the PLX and DMSO samples at Day 7 and Day 14 respectively. Single guide RNAs with false
discovery rate (FDR) <0.0001 (Benjamini and Hochberg, 1995) and log-fold-change below
—1 are listed using the topTags function and highlighted on a plot of log-fold-change versus
log-counts-per-millions by the plotSmear function.

4+ Assess differential representation between Day 14 PLX and Day14 DMSO samples

#4 and Day 7 PLX and Day 7 DMSO samples using GLM in edgeR

#+4 Set up design matrix for GLM

des = model.matrix(~x5$samples$group)

colnames(des)[2:ncol(des)] = ¢("Dayl4 DMSO", "Dayl4 PLX","Day7 DMSO", "Day7 PLX")
des

#+# (Intercept) Dayl4 DMSO Dayl4 PLX Day7 DMSO Day7 PLX
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441 1 0 0 0 0
44t 2 1 0 0 1 0
#4 3 1 0 0 1 0
H4 4 1 1 0 0 0
#4 5 1 1 0 0 0
#4 6 1 0 0 0 1
Y4 T 1 0 0 0 1
#4 8 1 0 1 0 0
#4 9 1 0 1 0 0

## attr(,"assign")

H# 101111

#+4 attr(,"contrasts")

#+# attr(,"contrasts")$x5$samples$group
#4# [1] "contr.treatment"

#4 Estimate variability in the screen amongst replicate samples
xglm = estimateDisp(x5, des)

4 Plot BCVs versus abundance
plotBCV (xglm, main="Shalem: BCV Plot")

Shalem: BCV Plot
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#4+ Fit negative bionomial GLM
fit = glmFit(xglm, des)

#4+ Carry out Likelihood ratio test for Day 14 contrast
Irtday14 = glmLRT(fit, des, contrast=c(0,-1,1,0,0))
dt14 = decideTestsDGE(Irtday14)

summary(dt14)

#4#  -1*Dayl4_DMSO 1*Dayld PLX
#+# Down 23873

#4 NotSig 32069

## Up 2349

#4+ Carry out Likelihood ratio test for Day 7 contrast
Irtday7 = glmLRT(fit, des, contrast=c(0,0,0,-1,1))
dt7 = decideTestsDGE(Irtday?7)

summary(dt7)

HH#H -1*Day7 DMSO 1*Day7 PLX
#+4 Down 0

## NotSig 58229

## Up 62

#4+ Show top ranked sgRNAs for Day 14 contrast
topTags(Irtdayl4, n=15)

#4+ Coefficient: -1*Dayl4 DMSO 1*Dayl4 PLX

HH gene name spacer_id spacer_ _seq logFC logCPM LR PValue FDR

#4#s 800 ACTA2 s 800 GGGACAAAAAGACAGCTACG 9.53 10.26 1502 0.00e+00 0.00e+00
#4s 37190 NLGN1 s 37190 ATCACAGTCAACTATCGACT 8.50 10.27 1591 0.00e+00 0.00e+-00
## s 14313 CUL3 s_ 14313 GAATCCTGTTGACTATATCC 8.30 10.31 1754 0.00e-+00 0.00e-+00
#4# s 14312 CUL3 s 14312 CTTACCTGGATATAGTCAAC 6.99 9.76 1402 7.14e-

307 1.04e-302

#4# s 35735 MYOIE s 35735 CAACCTTGTATGAGCCCGAG 9.37 9.55 1400 2.61e-

306 3.04e-302

## s 52770 SNCG s 52770 GCTCTGTACAACATTCTCCT 8.38 10.27 1381 2.79e-

302 2.71e-298

##s 7274 Clorf27 s 7274 CAAGTTATCCAACTTAGCTT 7.64 10.28 1375 7.06e-

301 5.88e-297

#4 s 12138 CLDNI10 s 12138 ACATGTCCAGGGCGCAGATC 7.99 9.351344 2.97e-

294 2.16e-290

##s 36799 NF2 s 36799 GTACTGCAGTCCAAAGAACC 6.37 10.34 1309 1.27e-

286 8.22¢-283

#4# s 47803 RNH1 s 47803 CGGCGTGCATTGCGTGCTCC 6.65 9.51 1286 1.13e-

281 6.56e-278

#4s 8730 CACNB2 s 8730 ATCCGATTCCGATGTATCTC 4.99 10.41 1277 1.44e-

279 7.66e-276

## s 33342 MED12 s 33342 CGTCAGCTTCAATCCTGCCA 6.88 9.20 1185 8.91e-

260 4.33e-256

#4# s 30886 LGALS4 s 30886 GATGGCCTATGTCCCCGCAC 7.47 8.42 1158 7.60e-

254 3.41e-250

## s 33855 MIA s 33855 GTCTTCACATCGACTTTGCC 7.99 9.45 1156 2.83e-

253 1.18e-249
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##s 29387 KIF13A s 29387 AGCAGCTGGGCCTTATTCCA 6.17 9.14 1149 6.30e-
252 2.45e-248

#4+ Show top ranked sgRNAs for Day 7 contrast
topTags(Irtday7, n=15)

## Coefficient: -1*Day7 DMSO 1*Day7 PLX

HH gene name spacer_id spacer _seq logFC logCPM LR PValue FDR
#4#s 14313 CUL3 s 14313 GAATCCTGTTGACTATATCC 3.47 10.31 232.6 1.61e-
52 9.38e-48

##s 36796 NF2 s 36796 AAACATCTCGTACAGTGACA 2.15 10.48 203.6 3.40e-
46 9.92e-42

#4# s 14312 CUL3 s 14312 CTTACCTGGATATAGTCAAC 2.59 9.76 146.9 8.20e-
34 1.59e-29

#4s 36799 NF2 s 36799 GTACTGCAGTCCAAAGAACC 2.34 10.34 144.4 2.89-
33 4.21e-29

##s 36798 NF2 s 36798 CCTGGCTTCTTACGCCGTCC 2.07 10.66 119.1 9.74e-
28 1.14e-23

#4 s 55205 TADA1 s 55205 AGCTCATAGACTTCTCACAC 2.54 7.62 85.6 2.18e-
20 2.12e-16

## s 14314 CUL3 s 14314 GACCTAAAATCATTAACATC 2.51 8.31 69.8 6.64e-
17 5.53e-13

## s 33342 MEDI12 s 33342 CGTCAGCTTCAATCCTGCCA 2.20 9.20 66.3 3.83e-
16 2.79e-12

#4 s 55215 TADA3 s 55215 TCAGTAACTCCTCAAGTGTG 1.82 6.64 63.3 1.76e-
15 1.14e-11

## s 55204 TADA1 s 55204 ACTGGGCTAACCTAAAGCTG 2.53 6.62 53.2 3.07e-
13 1.79e-09

#4#s 8980 CAND1 s 8980 TCACCTAAAGTCCTTGTCGC 2.08 6.15 52.7 3.95e-
13 2.09¢-09

#4s 2661 ANKZF1 s 2661 GGGAACATTATAAGCTTGAC 2.19 4.73 49.7 1.78e-
12 8.65e-09

## s 55276 TAF5L s 55276 CAGCCCTATTCTGCAGAACG 1.94 6.54 47.3 6.16e-
12 2.76e-08

#4 s 64856 ZP1 s 64856 ACCAGCTCATCTATGAGAAC 2.32 10.27 46.5 8.99¢-
12 3.74e-08

##s 17709 EHMT2 s 17709 TCAGATTCATCCCCAATGAG 2.05 9.62 43.1 5.10e-
11 1.98e-07

#4# Select sgRNAs with FDR < 0.0001 and logFC < -1 to highlight on plot
thresh = 0.0001
lfc =1

topl4 = topTags(lrtday14, n=Inf, sort.by="1logFC")
top7 = topTags(Irtday7, n=Inf, sort.by="logFC")
sum(topl4$table[,8]<thresh)

#4¢ [1] 4536

sum (topl4$table[,8]<thresh & topl4$table[,4]>1fc)
#4 [1] 1135
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sum(top7$table[,8]<thresh)

44 [1] 22

sum (top7$table[,8]<thresh & top7$table[,4]>1fc)
## (1] 22

topids14 = as.character(topl4$table[topl4$table$FDR < thresh & topl4$table$logFC>l1fc,2])
topids7 = as.character(top7$table[top7$table$FDR <thresh & top7$table$logFC>lfc,2])

# Make a plot of logFC versus logCPM for Day 14 contrast
par(mfrow=c(1,2))
plotSmear(lrtday14, de.tags—topids14, pch=20, cex=0.6,
main="Shalem: Day 14 PLX vs Day 14 DMSO")

£ Make a plot of logFC versus logCPM for Day 7 contrast
plotSmear(lrtday7, de.tags=topids7, pch=20, cex=0.6,
main="Shalem: Day 7 PLX vs Day 7 DMSO")

Shalem: Day 14 PLX vs Day 14 DMSO Shalem: Day 7 PLX vs Day 7 DMSO
2 :
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We complete the analysis by summarising the data at the gene-level using the roast (Wu et
al. 2010) gene-set test. The collection of individual sgRNAs that target a specific gene are
regarded as a ‘set’. Genes with multiple sgRNAs that go down in the Day 14 ‘PLX versus
DMSQ’ comparison are of primary interest. The genes NF1, MED12, NF2, CUL3, TADA2B,
and TADAI are examined first, as they were reported as key genes finding in the original
paper, followed by an analysis for all genes.

# Carry out roast gene-set analysis
genesymbols = x5$genes[,1]

genesymbollist = list()
unq = unique(genesymbols)
unq = ung[lis.na(unq)]
for(i in unq) {
sel = genesymbols==i & lis.na(genesymbols)
if(sum(sel)>=3)
genesymbollist[[i]] = which(sel)

}
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#4 Begin with sgRNAs targeting NF1, MED12, NF2, CUL3, TADA2B and TADA1
#+4 that were reported as top hits in the paper
topgenes = ¢("NF1", "MED12", "NF2", "CUL3", "TADA2B", "TADA1")

set.seed(3042014)
for(i in topgenes) {
ind = genesymbols==i
cat("Roast results for Day 14 contrast", i, "\n")
print(roast(xglm, index=ind, des, contrast=c(0,-1,1,0,0), nrot=9999))

}

#4# Roast results for Day 14 contrast NF1
H# Active.Prop P.Value

#+4 Down 0 1le+00

#4# Up 1 1e-04

#+# UpOrDown 1 2e-04

#4 Mixed 1 2e-04

#+# Roast results for Day 14 contrast MED12
HH# Active.Prop P.Value

#+4 Down 0 1le+00

#4# Up 1 5e-05

#+# UpOrDown 1 1le-04

#4 Mixed 1 1le-04

#+# Roast results for Day 14 contrast NF2
HH# Active.Prop P.Value

#+4 Down 0 1le+00

#4# Up 1 5e-05

#+# UpOrDown 1 1le-04

#+4 Mixed 1 1le-04

#+# Roast results for Day 14 contrast CUL3
HH# Active.Prop P.Value

#+# Down 0.167 1e+00

## Up 0.500 5e-05

#+# UpOrDown 0.500 1e-04

## Mixed 0.667 1e-04

## Roast results for Day 14 contrast TADA2B
H#H# Active.Prop P.Value

#+# Down 0 1le+00

#+4# Up 1 5e-05

#+4 UpOrDown 1 1le-04

#+4 Mixed 1 1le-04

## Roast results for Day 14 contrast TADA1
H#H# Active.Prop P.Value

#+# Down 0 1le+00

#4# Up 1 1le-04

#+4 UpOrDown 1 2e-04

#+4 Mixed 1 2e-04

#4+ Make a barcode plot for NF1
nfl = genesymbols=="NF1"
par(mfrow=c(2,1))
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barcodeplot(lrtday14$table$logFC, index—nf1,

main="Barcodeplot for NF1 (Day14 PLX versus Dayl4 DMSO)",
labels=c( "Negative logFC", "Positive logFC"))

#4 Make a barcode plot for NF2

nf2 = genesymbols=="NF2"

barcodeplot(lrtday14$table$logFC, index=nf2,
main="Barcodeplot for NF2 (Day14 PLX versus Dayl4 DMSO)",
labels=c( "Negative logFC", "Positive logFC"))

Barcodeplot for NF1 (Day14 PLX versus Dayl4 DMSO)
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Barcodeplot for NF2 (Day14 PLX versus Day14 DMSO)
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#4 Run mroast for all genes for Day 14 contrast

set.seed(3042014)

roast.res.dayl4 = mroast(xglm, index=genesymbollist,
des, contrast=c(0,-1,1,0,0), nrot—=9999)

#4+ Display ranked results for top ranked genes that drop out in the screen
roast.res.dayl4[roast.res.day14$Direction=="Up" ][1:10,1:6]

H## NGenes PropDown PropUp Direction PValue FDR
## MED12 4 0 1 Up 1e-04 0.000576

## MED15 4 0 1 Up 1e-04 0.000576

#4# NF2 4 0 1 Up 1e-04 0.000576
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#4 CCDC101 3 0 1 Up 1le-04 0.000576
#4# KCTD10 3 0 1 Up 1e-04 0.000576
44t PGD 3 0 1 Up 1le-04 0.000576
#4 SMARCB1 3 0 1 Up 1le-04 0.000576
#4 TADAL 3 0 1 Up 1le-04 0.000576
#4 TADA2B 3 0 1 Up 1e-04 0.000576
#4 TAF6L 3 0 1 Up 1le-04 0.000576

match(topgenes, rownames(roast.res.dayl4[roast.res.day14§Direction=="Up" ]))
## [1]NA 1 341 9 8

sum (roast.res.day14$Direction=="Up" & roast.res.day14$FDR <0.001)

## [1] 94

8 Further reading

Studies that have made use of our software in their screen analyses include Sheridan et al.
(2015), Ziller et al. (2015) [both shRNA-seq pooled screens| and Toledo et al. (2015)
[CRISPR-Cas9 knockout screen].

Since publication of our work, a number of other groups have also advocated for the use
of RNA-seq style analysis workflows that assume a negative binomial distribution of the
underlying count data in CRISPR-Cas9 screen analyses. These include Li et al. (2014) in the
MAGeCK software and Winter et al. (2015) in the caRpools software.
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10 Software information

A summary of the packages used to complete this case study is given below. The knitr
package (Xie, 2013) was used to generate this vignette.

sessionInfo()

## R version 4.0.2 (2020-06-22)

#4 Platform: x86 64-w64-mingw32/x64 (64-bit)
#+# Running under: Windows 10 x64 (build 18362)
##

#+# Matrix products: default

##

#+4 locale:
#4 [1] LC_ COLLATE=English Australia.1252 LC_CTYPE=English Australia.1252

#4 [3] LC_MONETARY=English Australia.1252 LC_NUMERIC=C

#+# [5] LC_TIME=English Australia.1252

##

#+t attached base packages:

#4# [1] stats  graphics grDevices utils ~ datasets methods base

##

#4 other attached packages:

## [1] knitr_1.30

##

#+# loaded via a namespace (and not attached):

#4 [1] BiocManager 1.30.10 compiler 4.0.2 BiocStyle 2.16.1 magrittr 1.5
#4 [5] formatR_ 1.7 htmltools 0.5.0  tools 4.0.2 yaml 2.2.1
## [9] rmarkdown 2.4 stringi  1.5.3 highr 0.8 digest 0.6.25
## [13] stringr  1.4.0 xfun 0.18 rlang 0.4.7 evaluate 0.14
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