HAPLOCLUSTERS Documentation
Melanie Bahlo

bahlo@wehi.edu.au

December 2004
What is HAPLOCLUSTERS?

HAPLOCLUSTERS is a program designed to detect excess haplotypes sharing in datasets consisting of case and control haplotypes. Excess haplotype sharing can be seen around disease loci in case samples since LD persists longer here than in the controls where LD is persisting only according to the relatedness of the individuals in the population, i.e. the age of the population. This LD is often referred to as background LD.
HAPLOCLUSTERS employs a simple non parametric sharing statistic. It is particularly suited for genome wide scanning where the emphasis lies in the initial detection of excess sharing, not in the precise mapping of the locus. More precise mapping is carried out by selecting promising regions from the initial genome wide scan and covering these with further microsatellite markers. Ancestral haplotypes inferred by HAPLOCLUSTERS may also be used by other programs, in particular likelihood based methods.

The peak should increase and resolve the position of the disease gene further. Promising candidate regions as identified through gene prediction software and databases such as GO (Genetic Ontology) are then scanned for polymorphisms which can then be tested for association and finally tested for altered expression with techniques such as Northern blots and RT-PCR.
Getting started

Typing haplo_clusters.pl will give the following list of options:

Usage: haplo_clusters.pl -opt i -miss j -perms x [-c y -share u -sd s -mn <file> -ah a]

Author: Melanie Bahlo

The files casehaps.out and controlhaps.out must be present in the working directory.

Options:

All options not in square brackets must be specified. Others are optionally specified.

-opt i

0 use right/left rule to determine marker order

1 use genetic distances to determine marker order

Requires an input file called map.dist with map distances separated by whitespace.

-miss j

0 missing data replaced using single marker information

1 missing data replaced using 2 marker haplotype information

-perms x

x = # of permutations (must be >0)

-ah k

0 uses the most frequent case allele as the starting point for the ancestral haplotype (default).

1 uses a given ancestral haplotype to start the ancestral haplotype (file ah.in).

2 uses the case allele which gives the highest chi-square result to start the ancestral haplotype.

-c y

y = # of clusters allowed (default: c = 1)

-share u

u = # of case haplotypes at which calculations stop (default: share = 5)

-sd s

sd = standard deviation (p estimator)

-mn <file>

Allows the provision of marker names for all output.

-Rplot <file>

Prints out a simplified version of haplo_clusters.out for immediate entry into R.

-Sortfiles

Prints out all haplotypes sorted according to clusters. Produces 2*# of markers extra files.

For more details see the documentation.
Data Input Requirements

Haploclusters requires a minimum of 3 input files.

The three files are:

1. casehaps.out – the file of case haplotypes. This file has to be called by this name.
Example Data:
235 T 2 3 10 11

231 T 1 3 10 9

211 T 1 3 11 9

……

2. controlhaps.out – the file of control haplotypes. This file has to be called by this name.

Example Data:
131 U 2 2 10 11

112 U 6 8 14 9

111 U 1 4 11 9

……

3. map.dist – the file containing the map distances (units don’t matter). This file must be provided if -opt 1 has been specified.

Minimum options required
-opt {0 or 1}
This option allows the specification of how markers are to be incorporated into the sorting algorithm. If map distances have been provided the –opt 1 version is most suitable.

-share K
This parameter in effect determines to what length the haplotype sharing should be pursued. K is the number of case haplotypes that still need to share the ancestral haplotype in order for the next marker to be examined via the chi square independence test statistic. K=5 is the default value and useful for genome wide scans and also is the minimum acceptable cell entry for contingency tables in order for the chi square approximation to hold.

-miss {0 or 1}

Determines whether the missing data is imputed using allele frequencies or 2 marker haplotype frequencies. 1 is the preferred value.

-perms x
The number of permutations used for the calculation of the marker specific p-values.

-c y

The number of “clusters” (see BLADE ref) or ancestral haplotypes allowed in the calculations. Currently buggy for c>1.

-ah {0, 1, 2}

The ancestral haplotype estimation option. –ah 0 uses the most frequent allele in the cases as the seeding allele for the ancestral haplotype. –ah 1 allows you to specify a particular ancestral haplotype. –ah 2 uses the allele with the highest Odds Ratio as the seeding allele for the ancestral haplotype.

Extra Options

Output Options

-Rplot
This allows output of the first table in a format easily read in as a data frame by the statistical package R. An R script has been provided that allows easy plotting of the output.
-Sortfiles

Outputs all haplotypes sorted according to the shared ancestral haplotype detected at each marker. This is done for both case and control haplotype datasets. Hence if there are M markers this output option will generate 2*M files

-sd z

This is a percentage of the estimated p –value from the sharing statistic. The permutation test will cease for that marker once a marker has reached a standard deviation of this value.
-mn <marker names>

Allows for the provision of marker names which will then appear in all output.
Programming
HAPLO_CLUSTER is written in PERL, a language that compiles and executes simultaneously. It is virtually platform independent and allows great flexibility. This is particularly important for genome wide scanning when chromosomes can be allocated easily to different machines operating with different platforms since PERL does not require platform specific compilation. PERL pays a price for this capacity. Platform specific compilation, such as that used when compiling C or C++ programs, leads to the efficient usage of hardwired resources to come up with the optimum executable code.

The platform independence makes it easy to utilize rough parallelization schemes such as those available through SUNGRID (http://wwws.sun.com/software/gridware/). SUNGRID allows the utilization of a “cluster” of processors across many platforms. For a genome wide scan it is relatively easy to parcel out a chromosome to a processor. A ten processor cluster can run a data set of approximately 300 case and control haplotypes in 1-2 days, collating output as it goes.

PERL is also available with all standard distributions of UNIX and LINUX and WINDOWS. There are two additional packages which should be installed however to use HAPLOCLUSTERS. These are
· A random number generator (currently)
· An extended command line ()
The Algorithm
For a detailed description of the algorithm please consult “A simple method for the detection of haplotype sharing”.
Dealing with missing data

Missing data is dealt with by imputing the missing data. This can be controlled through the –miss option which allows imputation either by imputing the missing allele in the haplotype by drawing from the allele frequency distribution of case (or control) set of data for that marker.

Care should be taken not to use this algorithm on data with a lot of missing data as the imputation procedure will be liable to give false positives (since it is choosing from a much reduced dataset). A suggestion is to remove all haplotypes and markers with more than 50% missing data.
P-value Adjustments

The p-values derived through the permutation test are unfortunately not independent because deriving independent p-values by these means is too time consuming. Whilst this is not ideal it is possible to check the validity of the p-values by plotting all the p-values from the results of a genome wide scan in R. To carry out multiple testing adjustments set the –sd value to 0 to make sure that all permutation χ2 values are calculated.

Output

There are two main output files: haplo_clusters.out and haplo_clusters_chis.out.

haplo_clusters.out

This is the main output file. The file contains two tables. The first table is the sharing statistic output.

The table has 8 columns:

1. Marker name

2. Position (cM)

3. Sharing statistic

4. p-value of Sharing statistic

5. Standard deviaton of the sharing statistic (>0.01*p-value)

6. -log(p-value)

If the number of permutations is 0 or 1 only 1-3 will be printed out.

The second table contains the list of marker by marker haplotypes sharing statistics as well as the ancestral haplotype(s) found at this marker and the number of haplotypes still sharing the ancestral haplotype (decay of haplotype sharing) as the algorithm moves away from the central or starting marker.
haplo_clusters_chis.out
This file contains all the permutation, and original, chi-square results for each marker.

Output files are produced by several options.

-Sortfiles

This produces files named casehaps_sorted_<marker>.out and controlhaps_sorted_<marker>.out. These are files containing the sorted case and control haplotypes sorted according to the marker <marker>.

-Rplot

This file produces a plot friendly form (either for R or for EXCEL) of the first table from the file haplo_clusters.out.
Technical Notes

M & V

The sorting is effected through the data structures m and v which are multidimensional matrices that document the sorting process by starting marker and the marker to be sorted next. V is the matrix that gives the clustering and represents a vector of length c+1. The first entry would contain the number of haplotypes who still share the haplotypes of the first ancestral cluster at this particular marker, the second entry the number of haplotypes still sharing at the second cluster and so on. The cth +1 cluster represents all those haplotypes who don’t share with any of the c clusters anymore. The M matrix stores the actual IDs of the haplotypes. There is a similar storage system for the control haplotypes through v_controls and m_controls. PERL has inbuilt sort routines which effectively sort data.
Citing
This program is distributed free of charge but please cite the accompanying paper.

